Nube de Etiquetas
(Ah?)

lunes, enero 29, 2018

Una especie de Pensum para aprender Machine Learning por tu cuenta

Digamos que deseas entrar en el campo de Data Science/Data Mining/Machine Learning, sin estudiar una Maestría o PhD. ¿Cómo hacer? Yo acá comparto una suerte de "pensum" autodidacta, basado en cursos y recursos online, que pudiera servir como camino para entrar en esta área.
Como video inspiracional, está este video en donde una chica cuenta cómo se inició como Data Scientist de forma autodidacta: 

Ahora, yendo al grano, la ruta que yo pensaría que podría ayudarles a entrar al tema es esta:
  1. Básico de Python para análisis y visualización de datos: https://www.coursera.org/specializations/introduction-scripting-in-python?siteID=.GqSdLGGurk-kvC_Sa81XIfCLUjkljxQYA&utm_content=10&utm_medium=partners&utm_source=linkshare&utm_campaign=*GqSdLGGurk... porque primero hay que saber examinar datos y tener una idea preliminar de qué está pasando. Saber hacer esto en Python y en excel les pone a poder aplicar como Data Analyst en cualquier país del mundo, en especial si aparte de esto aprenden SQL y Hadoop/Spark.
  2. Básico de Machine Learning (por el prof. Ng, usando Octave o Matlab):https://www.coursera.org/learn/machine-learning ...Este curso es para ya adentrarse en Machine Learning. Recomendaría instalar Octave.. simplemente porque es gratis!
  3. Luego sugeriría replicar los resultados obtenidos en el curso del prof. Ng, usando Python y las librerías de machine learning (en especial Sci Kit Learn).
  4. Si les anima, pueden ver el curso de Deep Learning para poner la guinda a la torta: https://www.youtube.com/playlist?list=PLlJy-eBtNFt6EuMxFYRiNRS07MCWN5UIA  Acá está el material del curso: http://cs231n.github.io/ ...Sin embargo, a menos que vayan a trabajar con datos que son video, imágenes, o audio, o series de tiempo, no me apuraría demasiado a aprender Deep Learning. En todo caso la recomendación base es.. NO aprender Deep Learning sin haber dominado en general análisis de datos, estadística, y los métodos clásicos de Machine Learning.
Esto es una ruta sugerida, basada en aprender Octave y Python. Hay gente que recomienda R. Yo, sin embargo, a menos que ya supiese que en donde estaré trabajando, se usará R exclusivamente, preferiría Python, por ser un lenguaje de uso general, que se convertirá en una destreza transferible para otro tipo de problemas y trabajos. No es que R sea malo, es sólo que saber Python es una herramienta que es transferible a muchas otras cosas fuera del cómputo científico.

Estoy seguro de que habrá quienes tengan propuestas y recomendaciones alternativas, y me honraría que compartieran su opinión en la sección de comentarios.

1 comentario:

Aracelys Sunico dijo...

Buen Articulo Gracias! Es facinante la cantidad de informacion gratuita que hay disponible para aprender. Yo recomendaria los siguientes libros:

1. VanderPlas, Jake. Python Data Science Handbook. O’Reilly. 2016. (available free online at https://github.com/jakevdp/PythonDataScienceHandbook)
2. Grus, Joel. Data Science from Scratch. O’Reilly. 2015.
3. Downey, Allen. Think Python. Green Tea Press. (available free online at http://greenteapress.com/wp/think-python/)
4. Diez, Barr & Cetinkaya-Rundel. OpenIntro Statistics, Third Edition. 2015. (Free online or paper copy orderable at https://www.openintro.org/stat/textbook.php?stat_book=os)

Todos disponibles on-line.

Saludos,

Aracelys