Nube de Etiquetas
(Ah?)
Mostrando las entradas con la etiqueta Events. Mostrar todas las entradas
Mostrando las entradas con la etiqueta Events. Mostrar todas las entradas

viernes, mayo 04, 2012

Enfoques basados en optimización convexa para clasificación de patrones

Tal y como lo comenté anteriormente, el próximo martes 8 de mayo de 2012, en la Sala Carlos Aragone, Edf. FEI-256 (segundo piso), de la Universidad Simón Bolívar (USB), a las 2:30pm se dictará un seminario titulado:

ENFOQUES BASADOS EN OPTIMIZACION CONVEXA
PARA LA CLASIFICACION DE PATRONES

El expositor, el Prof. Orestes Manzanilla (del Dpto. Procesos y Sistemas de la USB)

Resumen

En este seminario se mostrará un enfoque novedoso para resolver un problema específico dentro de las áreas de minería de datos, aprendizaje artificial y reconocimiento de patrones: el de la clasificación de patrones. Este es un problema con diversas aplicaciones, entre las cuales se puede mencionar el apoyo en
prognosis médica, otorgamiento de créditos, categorización de textos, prospección petrolera, detección de patrones de fraude, detección de patrones físicos (sonoros, visuales, etc), análisis de perfiles de expresión genética, ADN y proteínas diversas. Se hará un breve repaso de las técnicas más comunes para la resolución de este problema,  nacidas de la estadística, y de distintos campos de “máquinas de aprendizaje”, algunos de ellos bio-inspirados, indicando brevemente las ventajas y desventajas de cada método.
Se expondrá un grupo de heurísticas basadas en optimización lineal, y lineal entera-mixta para la generación de clasificadores de patrones de tipo no-lineal (pero lineal por partes), que puede representarse tanto como redes neurales artificiales, como árboles de clasificación, explicando las ventajas y  desventajas que comparativamente se observan respecto a los métodos mencionados anteriormente.
Los métodos están orientados hacia la búsqueda de (1) la minimización de la dependencia del “éxito” de la implementación, de la experticia del implementador, cerrando la brecha "tecnológica" que actualmente mantiene a los no-expertos alejados de este tipo de problemas, y (2) la escalabilidad de la técnica, para garantizar su aplicabilidad en bases de datos masivas. Por último, se esboza el posible uso de las  estructuras no-lineales generadas en el espacio multi-dimensional, ya no tanto para la predicción de la categoría o patrón de un nuevo
indivíduo de clase desconocida, sino para la visualización de los patrones en el espacio multi-dimensional.

Palabras claves: Programación lineal, Redes neurales artificiales, Máquinas de Soporte Vectorial, Clasificadores de patrones, Máquinas de aprendizaje.

lunes, febrero 07, 2011

¡Aprobadas tesis de maestría en I.O. aplicada a Machine Learning!

Orgullosamente felicito a mis dos amigas y tesistas de la maestría en Ingeniería de Sistemas de la USB (opción Investigación de Operaciones), Adriana Torres y Ana Serra, quienes este viernes en la mañana tuvieron sus respectivas defensas, con un jurado integrado por mi persona, como tutor, por el prof. Marcos Raydan, como miembro principal del jurado. Los presidentes del jurado evaluador fueron, respectivamente, Ana María Borges y Hugo Montesinos.

Los nombres de los trabajos de grado son:
  • "Clasificación multicategoría de patrones mediante optimización de multisuperficies" - Adriana Torres
  •  "Algoritmo de Boosting en Métodos Multi-superficies para clasificación binaria" - Ana Serra
Ambas defensas tuvieron lugar en la sala de reuniones del Centro de Estadística y Software Matemático.

Felicidades por un trabajo bien hecho! Es un placer contar con tesistas de ese calibre.

martes, diciembre 07, 2010

Búsqueda Directa no monótona para optimización con restricciones lineales

Tengo el agrado de invitarlos a la defensa de la Tesis Doctoral denominada

     "MÉTODO DE BÚSQUEDA DIRECTA NO MONÓTONA
             PARA OPTIMIZAR UNA FUNCIÓN OBJETIVO
                SUJETA A RESTRICCIONES LINEALES"

presentada por el estudiante ILDEMARO JOSÉ GARCÍA URREA
como requisito parcial para optar al título de DOCTOR EN INGENIERÍA.

Fecha: viernes 10 de diciembre del 2010
Hora: 2:00 pm
Sitio: sala 133 del edificio Ciclo Básico 1.

Trabajo realizado bajo la tutoría del Prof. Ubaldo García Palomares

Jurado examinador:
     Prof. Bernardo Feijoo (USB),
     Prof. Marcos Raydán(UCV),
     Prof. Ubaldo García Palomares(USB),
     Prof. Ebert Brea (suplente UCV),
     Prof. Débora Cores (suplente USB)

lunes, junio 01, 2009

Charla: Clasificadores multi-superficie con minimización asimétrica de errores


En el contexto del Primer Ciclo de Charlas de los Postgrados en Estadística a realizarse los días jueves de las semanas impares de este trimestre, este jueves 4 de junio de 2009 dictaré esta charla, a las 11:30 am en el edificio MyS oficina 108. Específicamente, se realizará en la sala de seminarios del CESMa-USB.

Las charlas están pensadas para que estudiantes o egresados de nuestros programas compartan resultados o avances de sus trabajos de grado, estimulando el intercambio de ideas entre los participantes.

El tema de mi ponencia, en esta ocasión, versará sobre el uso de heurísticas de optimización, para la generación de un clasificador de patrones (reconocedor de patrones) multi-superficie. Se hablará sobre las Redes Neurales Artificiales de Clasificación Binaria (perceptrones de una capa oculta), Máquinas de Vectores de Soporte (SVMs), y sobre enfoques innovadores en el tratamiento asimétrico de errores de clasificación.